Z40 - NEUTRONOWA ANALIZA AKTYWACYJNA. POMIAR WSPÓŁCZYNNIKÓW ABSORPCJI PROMIENOWANIA NEUTRONOWEGO.

II Pracownia Fizyczna Wydział Fizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Jagielloński

1 Wstęp

Celem ćwiczenia jest wykonanie pomiarów widm promieniowania γ próbek aktywowanych strumieniem neutronów emitowanych przez źródło izotopowe AmBe oraz przeprowadzenie analizy absorpcji tego promieniowania przez różne materiały. Pomiary widm aktywacyjnych przeprowadzane są za pomocą detektora półprzewodnikowego HPGe, który po precyzyjnej kalibracji energetycznej oraz wydajnościowej pozwala na określenie zawartości wybranych pierwiastków w badanych próbkach, w szczególności manganu, jodu, złota oraz srebra. Ponadto, próbki zawierające znane masy tych pierwiastków (np. folie aktywacyjne wykonane ze złota) pozwalają na oszacowanie strumienia neutronów emitowanych z wykorzystywanego źródła AmBe i porównania go z wartością podaną przez producenta. Analizę pochłaniania promieniowania neutronowego prowadzi się za pomocą pomiarów zmian strumienia neutronów przy zwiększaniu warstwy badanego absorbenta, co pozwala na wyznaczenie wartości efektywnego współczynnika absorpcji.

Dostępne na Pracowni izotopowe źródło AmBe emituje neutrony powstające w reakcji ⁹Be + $\alpha \rightarrow^{12}$ C + n, których rozkład energii przedstawiono na Rys. 1. Cząstka α pochodzi z rozpadu izotopu ²⁴¹Am, który w postaci tlenku (AmO₂) mieszany jest z pyłem berylowym lub tworzy z nim stop [1]. Obszar aktywny źródła umieszczony jest w kapsule stalowej w kształcie walca o średnicy 17,4 mm oraz wysokości 19,2 mm. Zgodnie ze świadectwem wzorcowania aktywność zawartego w nim ameryku wynosi 12,95 GBq, co odpowiada emisji ok. (7,7 ± 1,5) $\cdot 10^5$ neutronów na sekundę. Poza promieniowaniem neutronowym źródło emituje kwanty γ towarzyszące rozpadowi ²41Am z najbardziej intensywną linią o energii 59,5 keV, oraz wysokoenergetyczne promieniowanie γ o energii 4,438 MeV emitowane w przypadku produkcji w reakcji ⁹Be(α, n)¹²C wzbudzonego jądra węgla. Prawdopodobieństwo takiej emisji jest zależne od konstrukcji źródła i jest rzędu 0,6 na jeden wyprodukowany neutron [1]. Źródło na Pracowni przechowywane jest w parafinowej osłonie w kształcie sześcianu otoczonej warstwą kadmu o grubości 1 mm oraz stali (2 mm). W osłonie wykonana jest, w centaralnej części, wnęka na źródło oraz trzy otwory na napromieniane próbki, jak przedstawiono na Rys. 2.

Rysunek 1: Widmo energetyczne neutronów emitowanych przez źróło AmBe.

2 Oddziaływanie neutronów z materią

W przeciwieństwie do cząstek naładowanych promieniowanie neutronowe oddziałuje w materii przede wszystkim z jądrami atomowymi oraz, z dużo mniejszym prawdopodobieństwem, z elektronami. Procesy, w jakich neutrony oddziałują z materią silnie zależą od ich energii, co znacznie komplikuje ich detekcję i ochronę radiologiczną. Zimne neutrony (o energii $E_n < 1 \text{ meV}$) mają długość fali porównywalną do np. stałych sieci krystalicznych ciał stałych i ulegają głównie dyfrakcji na atomach lub cząsteczkach ośrodka. Dlatego wykorzystywane są one w radiografii i badaniach w fizyce ciała stałego, szczególnie dla lekkich pierwiastków, dla których radiografia promieniowaniem X nie jest efektywna. Neutrony termiczne (1 meV $< E_n < 0, 5 \text{ eV}$) oddziałują z jądrami atomowymi przede wszystkim poprzez elastyczne rozpraszanie, które jest kluczowym procesem wykorzystywanym także przy wyższych energiach do spowalniania (moderacji) neutronów, np. w reaktorach jądrowych. Proces ten wykorzystuje się także przy konstrukcji osłon przeciw promieniowaniu neutronowemu, które wykonuje się

Rysunek 2: Schematyczne przedstawienie osłony źródła AmBe wraz z przybliżonymi wymiarami otworów do aktywacji próbek.

z relatywnie gęstych materiałów zawierających duże ilości lekkich pierwiastków (np. woda, polietylen). Można pokazać, że średnia zmiana energii neutronu o energii E_0 przy elastycznym rozproszeniu na jądrze o liczbie masowej A wynosi [2]:

$$\Delta E = \frac{2AE_0}{(A+1)^2} ,$$
 (1)

a średnią energię neutronu po \boldsymbol{n} zderzeniach elastycznych można zapisać jako:

$$E_n = E_0 \left[\frac{A^2 + 1}{(A+1)^2} \right]^n .$$
 (2)

Neutrony termiczne mogą być także pochłaniane przez jądra atomowe, co często prowadzi do transmutacji izotopu oraz wtórnej emisji promieniowania. Najczęciej emitowane są kwanty γ , ale mogą to być także protony, deuterony lub cząstki α [2]. Wychwyt neutronu może prowadzić także do emisji jednego lub kilku neutronów, a także rozszczepienia jądra. Ten ostatni proces związany jest z emisją dużej ilości energii oraz wtórnych cząstek, m.in. neutronów, co może w odpowiednich warunkach prowadzić do reakcji łańcuchowych. Dla neutronów prędkich o energiach rzędu megaelektronowoltów zachodzi jeszcze nieelastyczne rozpraszanie, w którym część energii neutronu przekazywana jest jądru, powidując jego wzbudzenie i emisję promieniowania γ przy jego deekscytacji. Energie emitowanych w tym procesie kwantów są bezpośrednio związane ze strukturą jądra i są charakterystyczne dla danego izotopu. powoduje to, że nieelastyczne rozpraszanie ma charakter reakcji progowej, z minimalną energią neutronu zależną od jądra.

Prawdopodobieństwo oddziaływania neutronów silnie zależy od energii oraz izotopu z jakim ono następuje, a jego miarą jest wielkość nazywana przekrojem czynnym [3], którą określa się dla każdego z wymienionych procesów oddziaływania. Całkowity przekrój czynny (suma przekrojów dla wszystkich możliwych procesów) maleje ze wzrostem energii neutronu. Dla niskich energii, poniżej 1 MeV, przekrój czynny na rozpraszanie elastyczne jest praktycznie stały, a prawodpodobieństwo absorpcji oraz nieelastycznego rozpraszania jest proporcjonalne do odwrotności prędkości neutronu [2]. Dla większości lekkich i średnich jąder dla niskich energii neutronów absorpcja dominuje i całkowity przekrój czynny zmienia się praktycznie tak, jak dla tego procesu. Przy wyższych energiach dla niektórych jąder atomowych, np. uranu ²³⁸U, wychwyt neutronu może prowadzić do formowania jąder złożonych, co zwiększa przekrój czynny i prowadzi do tzw. absorpcji rezonansowej. Dla ciężkich jąder pojawia się ona już dla energii neutronów rzędu elektronowoltów. Przy wyższych energiach wąskie rezonanse występują przy bardzo zbliżonych energiach i często nie można ich rozróżnić, podczas gdy dla prędkich neutronów stają się one szerokie i stosunkowo rzadkie [2]. Dla jąder lekkich rezonanse występują wyłącznie dla neutronów prędkich o energiach rzędu kilo- (np. kadm, nikiel, żelazo) lub megaelektronowoltów.

Makroskopowe efekty pochłaniania i rozpraszania neutronów można opisać podobnie jak dla kwantów γ . Intensywność I_0 wiązki neutronów o zadanej energii E po przejściu przez wastwę x absorbenta zmienia się zgodnie z następującym równaniem:

$$I(x) = I_0 e^{-\Sigma x} , \qquad (3)$$

gdzie Σ to tzw. makroskopowy przekrój czynny charakteryzujący efektywne oddziaływanie neutronów z ośrodkiem, w jakim się poruszają. Wielkość ta jest bezpośrednio związana z całkowitym przekrojem czynnym na oddziaływanie neutronów z jądrami i w związku z tym zależy od ich energii oraz składu pierwiastkowego ośrodka. Dla substancji o gęstości ρ i masie molowej M makroskopowy przekrój czynny można wyrazić jako:

$$\Sigma = \frac{\rho N_A}{M} (n_1 \sigma_{t1} + n_2 \sigma_{t2} + \dots + n_k \sigma_{tk}) , \qquad (4)$$

Materiał	$S [cm^{-1}]$	R
Woda	1,28	58
Ciężka woda (D_2O)	0,18	21000
Polietylen	3,26	122
Grafit	0,064	200

Tabela 1: Wartości makroskopowej zdolności spowalniania S oraz współczynników spowalniania R dla kilku często wykorzystywanych moderatorów. Dane dla neutronów o energii 0,001 - 100 keV [2].

gdzie n_i oraz σ_{ti} to odpowiednio liczba atomów *i*-tego pierwiastka w cząsteczce substancji oraz odpowiadający mu całkowity przekrój czynny na oddziaływanie z neutronem.

W projektowaniu osłon przeciw promieniowaniu neutronowemu, jego moderatorów oraz detektorów wykorzystuje się najcześciej średnią drogę swobodną zdefiniowaną jako odwrotność Σ , która pozwala w wygodny sposób oszacować np. wymaganą grubość absorbenta. Dla moderatorów określa się także makroskopową zdolność spowalniania S: iloczyn Σ oraz ζ , średniego logarytmicznego dekrementu energii neutronu w pojedynczym akcie rozpraszania:

$$\zeta = \langle \ln\left(\frac{E_0}{E}\right) \rangle = \int_{\alpha E_0}^{E_0} \ln\left(\frac{E_0}{E}\right) f(E) dE = 1 + \frac{\alpha}{1-\alpha} \ln\alpha , \qquad (5)$$

gdzie E_0 to energia neutronu przed zderzeniem, $\alpha E_0 = \left(\frac{A-1}{A+1}\right)^2 E_0$ to minimalna energia neutronu po rozproszeniu, a $f(E) = \frac{(A+1)^2}{4AE_0}$ to rozkład gęstości prawdopodobieństwa na elastyczne rozpraszanie neutronu do stanu końcowego o energii w przedziale (E; E+dE) [4]. Dla substancji składającej się z *n* izotopów definiuje się średnią wartość ζ :

$$\bar{\zeta} = \frac{\sum_{k=1}^{n} \zeta_i \Sigma_i}{\sum_{k=1}^{n} \Sigma_i} , \qquad (6)$$

gdzie ζ_i oraz Σ_i to wartości średniego logarytmicznego dekrementu energii oraz makroskopowego przekroju czynnego dla *i*-tego izotopu [5]. Do pełnej charakterystyki zdolności materiałów do moderowania neutronów należy jeszcze uwzględnić prawdopodobieństwo absorpcji tego promieniowania w obszarze energii termicznych. Dokonuje się tego poprzez podzielenie zdolności spowalniania przez makroskopowy przekrój czynny na absorpcję Σ_a :

$$R = \frac{\Sigma \zeta}{\Sigma_a} \ . \tag{7}$$

Zarówno S, jak i R są zależą praktycznie wyłącznie od własności moderatorów a ich efektywne wartości mogą być obliczone jako suma analogicznie jak w Rów. 4:

$$S = \frac{\rho N_A}{M} (n_1 \sigma_{t1} \zeta_1 + n_2 \sigma_{t2} \zeta_2 + \dots + n_k \sigma_{tk} \zeta_k) .$$
(8)

W Tab. 1 zostały przedstawione charakterystyki najczęściej wykorzystywanych moderatorów.

3 Neutronowa Analiza Aktywacyjna

Jak wspomniano niektóre procesy oddziaływania neutronów z materią prowadzą do emisji promieniowania γ poprzez wytworzenie nowych izotopów (wychwyt neutronów) lub wzbudzenie jąder (nieelastyczne rozpraszanie). Promieniowanie to wykorzystywane jest do niedestruktywnej analizy składu chemicznego substancji za pomocą Neutronowej Analizy Aktywacyjnej (NAA) oraz do szacowania strumieni neutronów poprzez aktywowanie specjalnie dobranych folii aktywacyjnych.

Neutronowa Analiza Aktywacyjna pozwala na oznacznie zawartości izotopów w całej objętości próbki i jest metodą selektywną i czułą nawet dla pierwiastków śladowych oraz ultraśladowych. Pomiar energii promieniowania γ emitowanego z aktywowanej próbki oraz jego intensywności umożliwia jednoznaczną identyfikację wszystkich radioaktywnych izotopów wytworzonych w procesie aktywacji [6]. Energie emitowanych kwantów γ zawierają się w zakresie od kilkuset kiloelektronowoltów do nawet ok. 11 MeV. Wysokoenergetyczne promieniowanie powstaje przede wszystkim w procesie nieelastycznego rozpraszania i emitowane jest praktycznie natychmiast po wzbudzeniu jądra. Dlatego praktyczne wykorzystanie tego zjawiska wiąże się z koniecznością jednoczesnego napromieniania próbki i rejestracji wtórnego promieniowania i znajduje zastosowanie w nieinwazyjnej identyfikacji substancji organicznych (i często niebezpiecznych: materiałów wybuchowych, narkotyków, broni chemicznej itd. [7]). W wyniku wychwytu neutronów najczęściej powstają izotopy o dłuższym czasie życia, których aktywność wznaczyć można z równania aktywacji.

Liczbę dN jąder nowego pierwiastka powstających w próbce o masie m w czasie dt można wyrazić jako różnicę pomiędzy liczbą produkowanych w wychwycie nowych jąder oraz liczbą tych ją, jaka się w tym czasie rozpadła:

$$\frac{dN}{dt} = N_p \sigma \phi - \lambda N(t) , \qquad (9)$$

gdzie N_p to liczba jąder w aktywowanej próbce, ϕ to gęstość strumienia neutronów (niezmienny w czasie i wyrażony w cm⁻²s⁻¹), σ oznacza przekrój czynny na ich wychwyt, N(t) to liczba jąder powstającego w aktywacji izotopu a $\lambda = 1/\tau = \ln 2/T_{\frac{1}{2}}$ to stała rozpadu produkowanego izotopu (odwrotność średniego czasu życia). Równanie to można rozwiązać ze względu na N(t) (z warunkiem brzegowym N(0) = 0):

$$N(t) = \frac{\sigma \phi N_p \left(1 - e^{-\lambda t}\right)}{\lambda} . \tag{10}$$

 N_p można określić znając masę aktywowanej próbki m oraz abundancję aktywowanego izotopu g i jego masę molową (M): $N_p = \frac{N_A g m}{M}$ (N_A to stała Avogadro). Stąd aktywność powstającego w procesie aktywacji izotopu wynosi:

$$A(t) = \sigma \phi \frac{mN_Ag}{M} \left(1 - e^{-\lambda t}\right) . \tag{11}$$

Łatwo zauważyć, że dla dużych czasów aktywacji aktywność dąży do stałej wartości: $A(t \to \infty) \to \sigma \phi \frac{mN_{A}g}{M}$. Dla izotopów krótkożyciowych ta aktywność nasycenia osiągana jest w krótkim czasie aktywacji (po kilku półokresach rozpadu). Dlatego jeżeli do oznaczenia danego pierwiastka wykorzystywana jest aktywacja izotopu krótkożyciowego, a równoczesne aktywowanie izotopów długożyciowych zakłóca pomiar (np. emitują one promieniowanie o bardzo zbliżonej energii), to czas aktywacji powinien być krótki, a aktywność próbki należy mierzyć niezwłocznie po zakończeniu aktywacji. W przypadku odwrotnym czas aktywacji powinien być długi, a pomiar aktywności rozpoczyna się po upływie dostatecznie długiego czasu t_c od chwili zakończenia aktywacji (czasu niezbędnego do "schłodzenia"krótkożyciowego izotopu). Aktywność napromieniowanego preparatu mierzona przez spektrometr γ wynosi więc:

$$A(t) = \sigma \phi \frac{mN_Ag}{M} \left(1 - e^{-\lambda t}\right) e^{-\lambda t_c} .$$
(12)

W praktyce aktywność napromieniowanej próbki szacuje się zliczając zdarzenia zarejestrowane w pikach pełnego pochłaniania charakterystycznych dla poszukiwanego izotopu. Jeżeli detektor zlicza kwanty γ przez czas t_p to całkowita liczba zaejestrowanych zdarzeń wyniesie:

$$N_t = \sigma \phi \frac{mN_Ag}{\lambda M} \left(1 - e^{-\lambda t}\right) e^{-\lambda t_c} \left(1 - e^{-\lambda t_p}\right) , \qquad (13)$$

Przy czym, jeżeli powstały izotop jest długożyciowy ostatni człon można pominąć dla małych wartości t_p . Do pełnego opisu doświadczalnego badania aktywowanych próbek należy uwzględnić także intensywność linii γ wykorzystywanej w pomiarach I (podawaną zwykle jako liczba emitowanych kwantów na jeden rozpad jądra) oraz wydajności detektora ϵ :

$$N_{exp} = \sigma \phi \frac{m N_A \epsilon I g}{\lambda M} \left(1 - e^{-\lambda t} \right) e^{-\lambda t_c} \left(1 - e^{-\lambda t_p} \right) . \tag{14}$$

Uwzględnić w niej należy nie tylko wewnętrzną efektywność detekcji, wynikającą z wymiarów detektora i jego materiału aktywnego (jego gęstości i przekoju czynnego na efekt fotoelektryczny), ale także geometrię aktywowanej próbki oraz jej względnego położenia w stosunku do detektora. Dlatego kalibrację wydajnościową powinno przeprowadzać się z wykorzystaniem specjalnie wykonanych źródeł kalibracyjnych o wymiarach identycznych z badaną próbką (i najlepiej takiej samej gęstości w przypadku grubych preparatów). Zawierają one zwykle kilka standardowych radioaktywnych izotopów γ o dokładnie znanej aktywności początkowej i zakresie energii emitowanego pomieniowania γ do ok. 2 MeV [8]. ϵ można oszacować także na podstawie symulacji Monte Carlo, które jednak zawsze powinno się zweryfikować za pomocą danych eksperymentalnych (np. porównanie kształtu widm dla danej linii γ otrzymanych z symulacji oraz eksperymentu). Istnieją również dedykowane programy od obliczania efektywności detektorów [9] oraz przeliczania jej na różne geometrie próbek [10, 11].

Kolejną wielkością, której dokładne oszacowanie jest niezbędne do precyzyjnego oznaczania pierwiastków na pomocą NAA jest gęstość strumienia neutronów ϕ . Do jego określenia można wykorzystać Rów. 14 aktywując próbkę o dokładnie znanej masie i składzie izotopowym. Wykorzystuje się w tym celu standaryzowane folie aktywacyjne wykonane z opowiednio dobranych pierwiastków (np. złoto), które pozwalają na pomiar zarówno strumienia neutronów termicznych, jak i szybkich. Przy takich pomiarach geometria wykorzystywanej folii oraz precyzyjne określenie wydajności spektrometru γ także mają duże znaczenie.

Wspomniane wyżej problemy można rozwiązać poprzez aktywowanie badanej próbki równocześnie z tzw. wzorcem stężenia zawierającym znaną ilość oznaczanego pierwiastka. Geometrie oraz sposób napromieniania w takim pomiarze muszą być identyczne dla obu próbek. Można wtedy wyrazić stosunek mas aktywowanej próbki m_x oraz wzorca m_w jako:

$$\frac{m_x}{m_w} = \frac{N_x \left(1 - e^{-\lambda t_w}\right) e^{-\lambda t_{cw}} \left(1 - e^{-\lambda t_{pw}}\right)}{N_w \left(1 - e^{-\lambda t_x}\right) e^{-\lambda t_{cx}} \left(1 - e^{-\lambda t_{px}}\right)} ,$$
(15)

gdzie N_x i N_w to liczby zliczeń zarejestrowanych odpowiednio dla próbki oraz wzorca, a t_x , t_{cx} , t_{px} oraz t_w , t_{cw} , t_{pw} to czasy aktywacji, chłodzenia oraz pomiaru spektrometrem γ dla tych próbek. Jak widać masę aktywowanego pierwiastka można w taki sposób wyznaczyć niezależnie od strumienia neutronów oraz wydajności detektora.

Literatura

- Z. Liu, J. Chen, P. Zhu, Y. Li, G. Zhang, The 4.438 MeV gamma to neutron ratio for the Amâ€"Be neutron source, Applied Radiation and Isotopes 65 (2007) 1318â€"1321.
- [2] P. Rinard, Neutron Interactions with Matter, Los Alamos Technical Report (http://www.fas.org/sgp/ othergov/doe/lanl/lib-www/la-pubs/00326407.pdf)
- [3] A. Strzałkowski, Wstęp do fizyki jądra atomowego, PWN 1979.
- [4] L. Dobrzyński, Wykłady dla studium podyplomowego z energetyki jądrowej, http://ncbj.edu.pl/zasoby/ wyklady/ld_stud_podypl/06.Elem_fiz_reakt.pdf
- [5] https://www.nuclear-power.com/glossary/neutron-moderatoraverage-logarithmic-energy-decrement/ (dostęp: 23.03.2023).
- [6] J. Stanek, Ochrona przed promieniowaniem, wykład dla studentów biofizyki WFAIS UJ.
- [7] M.Silarski, P. Moskal, Atometria jako metoda wykrywania substancji niebezpiecznych, Foton 112 (2011) 15-22.
- [8] https://www.eurostandard.cz/nuclides.html, dostęp: 23.03.2023.
- [9] https://www.angle.me/, dostęp: 23.03.2023.
- [10] http://efftran.com/, dostęp: 23.03.2023.
- [11] F.Piton, M.-c. Lepy, M.-M. Be, J. Plagnard, Efficiency transfer and coincidence summing corrections for g-ray spectrometry, Applied Radiation and Isotopes 52 (2000) 791-795.

ZAŁĄCZNIK 1

Poniżej przedstawiono kalibrację wydajnościową detektora HPGe ORTEC GMX25P4-70 dla źródła wolumetrycznego w kształcie walca o średnicy odpowiadającej wymiarowi detektora oraz wysokości ok. 4 cm. Poniżej znajduje się również eksperymentalnie wyznaczona zależność logarytmu wydajności w funkcji logarytmu energii promieniowania, która pozwala na wygodną parametryzację i oszacowanie wydajności dla dowolnej energii kwantów γ:

Nuklid	E [keV]	3	Δε	ln(E)	Ln(ε)	$\Delta \ln(\varepsilon)$
²⁴¹ Am	59,54	0,04642	0,00056	4,087	-3,070	0,037
¹⁰⁹ Cd	88,03	0,05097	0,00074	4,478	-2,977	0,043
⁵⁷ Co	122,1	0,0448	0,0011	4,805	-3,106	0,077
¹³⁷ Cs	661,7	0,01178	0,00017	6,495	-4,440	0,062
⁶⁰ Co	1173,2	0,0070	0,0001	7,068	-4,962	0,060
⁶⁰ Co	1332,5	0,0063	0,0001	7,195	-5,076	0,062

Parametry dopasowanej krzywej wynoszą:

Α	0,099 <u>+</u> 0,015
В	-1.86 <u>+</u> 0,26
С	10,7 <u>+</u> 1,4
D	-22,4 ± 2,5

ZAŁĄCZNIK 2

Charakterystyka detekt	ora HPGe ORTEC	GMX25P4-70
------------------------	----------------	------------

			later	Ann
Q	UALITY ASSURANCE DA	TA SHEET		
GMX Series H	Ge (High-Purity Germanium)	Coaxial Detector	System	
Detector Model No. C	WYOEDA 70			
Cryostat Configuration	MA20P4-/U			
Dewar Model	rG-PV4	Ship Da	te 14-Feb-12	_
Preamplifier Model	0571	Serial N	o. 52-TN42265A	-
Preamplifier Serial No. 1	25/N	When calling C	ustomer Service, alw	ays
H V Filter Medal 4	2020096	reference	the Detector Serial	No.
H V Filter Seriel No. 4	2027250	Sales Order N	0. 15008336	
SMART-1-N Seriel No. 1.	2027359			
Sing the red Senal No.				
Cryogenic Information				
Dewar Capacity	0 Static Hol	ding Time		
Detector Cool-Down Time				
STATISTICS PROCESSIONS				
High Voltage Bias				
Recommended Operating Bias	NEGATIVE	4800 Volts		
erformance Specifications*	Jarranted Me	asurad	Amp Shape Tim	
Resolution (EW/HM) at 1.33 MeV 60Co	1.90 keV	1.88 keV	6	uS
Peak-to-Compton Ratio, ⁶⁰ Co	48:1	53:1	6	μs
Relative Efficiency at 1.33 MeV, 60Co	25 %	28 %	6	μs
Peak Shape (FWTM/FWHM), 60Co	1.9	1.9	6	μs
*Peak Shape (FWFM/FWHM), ⁶⁰ Co	2.8	2.9	6	µs
*FWFM/FWHM is typical not warranted	N/A eV	708 eV	6	μs
Resolution (FVVHM) at 5.9 KeV, 10				_
	E. NOMINAL 5-mm RAD	IUS		
	L. Romine L Chanter			
K	F: 94-mm CUP LENGTH			
	G: 3-mm SPACE	A	- 53	mm
8	0.00 mm (0.00 mm All	A.das	Crystal Diameter	
	H: 0.03-mm/0.03-mm Al/M	wiyiar B=	70	mm
N N	I: 0.5-mm Be		Crystal Length	
-c-	INOMINAL 8-mm RAD	US C=	11.5	mm
Lannanna Cananna	J. HOMMAN CHIMITOR		Hole Diameter	
3mm NOT TO SCALE	K: 0.8-mm Al	-	64.2	mm
	L: 1-mm Al	0-	Hole Depth	
	0.0.0	AVER		
	M: 0.3-micron Ge/B DEAL	DATER		
	N: 700-micron Ge/Li DEA	DLAYER		
	L: 1-mm Al M: 0.3-micron Ge/B DEAD N: 700-micron Ge/Li DEA	D LAYER D LAYER	Hole Depth	

ZAŁĄCZNIK 3

Dane tablicowe dotyczące aktywacji niektórych pierwiastków:

σ [b]	E [keV]	Intensywność linii (na 1 rozpad)	Abundancja [%]	T _{1/2} [s]	M [g/mol]			
⁵⁵ Mn(n,γ) ⁵⁶ Mn								
13,3	847	0,99	100	154,8	54,9381			
,	1810	0,29		,	,			
	2110	0,15						
		¹⁰⁷ Ag(n,γ) ¹⁰	⁸ Ag					
35	632	0,017	51,35	145,2	106,905			
		¹⁰⁹ Ag(n,γ) ¹²	^{l0} Ag					
89	658	0,045	48,65	24,4	108,905			
		¹⁰⁹ Ag(n,γ) ¹¹	^{0m} Ag					
4,2	658	0,96	48,65	22032000	108,905			
	680	0,16						
	706	0,19						
	764	0,23						
	885	0,71						
	937	0,82						
	1384	0,21						
	1505	0,1						
		¹⁹⁷ Au(n,γ) ¹⁹⁸ Au						
98,8	412	0,95	100	232675,2	196,967			
	676	0,01						
		⁶³ Cu(n,γ) ⁶⁴ Cu						
4,5	511	0,38	69,15	46080	62,93			
		⁶⁵ Cu(n,γ) ⁶⁶ Cu						
2,3	1039	0,09	30,85	306	63,55			
		¹¹³ ln(n,γ) ¹¹	⁴In					
3	1299	0,0017	4,28	72	112,9			
		¹¹³ ln(n,γ) ¹¹⁴	^{Im} In					
4,5	192	0,17	4,28	4320000	112,9			
	558	0,035						
	724	0,035						
		¹¹⁵ ln(n,γ) ¹¹	⁶ In					
42	1270	0,012	95,72	14	114,9			
	¹¹⁵ ln(n,γ) ^{116m} ln							
155	137	0,03	95,72	3240	114,9			
	385	0,01						
	415	0,36						
	820	0,17						
	1090	0,53						
	1290	0,8						
	1490	0,11						

	1770	0,015				
	2120	0,2				
²⁶ Mg(n,γ) ²⁷ Mg						
0,03	843	0,72	11,1	567,6	25,983	
	1014	0,28				
		⁵¹ V(n,γ) ⁵²	V			
4,8	1430	1	99,75	225	50,944	
		⁴⁵ Sc(n,γ) ^{46m} Sc	c/ ⁴⁶ Sc			
13	889	1	100	2645870400	44,956	
	1120	1				
11	142	?	100	19,5	44,956	
		⁹⁴ Zr(n,γ) ⁹⁵ Zr→	⁹⁵ Nb			
0,075	724	0,49	17,4	5659200	93,906	
	756	0,49				
⁹⁵ Nb	765	1	-	3024000	-	
		⁹⁶ Zr(n,γ) ⁹⁷ Zr→	⁹⁷ Nb			
0,05	747	0,92	2,8	61200	95,908	
⁹⁷ Nb	665	0,98		4320		
		²⁷ Al(n,γ) ²⁸ Al	·	·		
0,232	1780	1	100	138	26,9815	
		⁶⁴ Ni(n,γ) ⁶⁵	Ni			
1,52	368	0,045	0,9256	9230,4	63,928	
	1114	0,16				
	1480	0,25				
²³ Na(n,γ) ²⁴ Na						
0,53	1368,633	1	100	53852,4	22,9898	
	2754,028	0,999				
¹²⁷ l(n,γ) ¹²⁸ l						
4,04	442,9	0,1261/0,1690	100	1499,4	126,904	
100 (w						
obszarze						
rezonansowym)						