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When experimental data are obtained from expensive
equipment it is desirable to extract as much information as
possible from those data. It is also desirable to make the
analysis as self-contained as possible by minimizing the need
to use literature values for quantities unobtainable by the
experimental design.

The electronic spectrum of iodine has played a central role
in testing the consistency of quantum mechanics and observed
spectroscopic fine structure. The results have been summa-
rized in a masterly fashion by Mulliken (7). The analysis of
the low resolution electronic spectrum of I, has become a
classic advanced undergraduate experiment, particularly since
the expository paper of Stafford (2) and its extension by
D’alterio et al. (3). The ready availability of minicomputers
and programmable calculators means that it is possible for
students to perform much more sophisticated analyses of
experimental data than has previously been the case. Staf-
ford’s analysis is quite restricted; with no more experimental
work it is possible to extract very much more information on
the spectroscopic constants of the iodine molecule and gain
significant insight into a range of spectroscopic and quantum
mechanical concepts.

The data that can be obtained include

(a) the separation between the minima of the potential curves, o,

(b) the frequencies and anharmonicities in each electronic state, w,
WeX g,

(¢) the dissociation energies in each electronic state, D¢,D,,

(d) the differences in equilibrium bond lengths,

(e) maximum.intensity transitions as well as information on the
vibrational wavefunctions.

Spectroscopic Introduction

The variation of potential energy of a diatomic molecule
with internuclear distance is conveniently represented on a
potential energy diagram. Figure 1 shows the variation in
potential energy for the iodine molecule in its ground (X)
electronic state and its second (B) excited electronic state.
This figure illustrates the parameters to be calculated and uses
the standard spectroscopic notation (4},

The iodine molecule gives rise to well resolved vibronic
bands between 500 nm and 620 nm. However, as can be seen
from Figure 2, there is significant overlap between (v, 0), (07,
1) and (v’, 2) in the middle of this region. This makes the
Birge-Sponer plots (4, p. 438) of both Stafford and D’alterio

1+1"CR, 4R )
s 2

[+] (P, 17, )

POTENTIAL ENERGY

by INTERNUCLEAR DISTANCE

Figure 1. Potential energy diagram for iodine.

The Electronic Spectrum of lodine
Revisited

et al. suspect at lower values of the vibrational quantum
number as it is clear that the (v’, 0) bands for v’ less than 14
are swamped by the intensity of the (v’, 1) and (v’, 2) bands.
Therefore, particular care must be taken in analyzing this
region. Fortunately, the existence of these hot bands makes
it possible, as will be shown below, to obtain much more in-
formation than is usually done.

Experimental Details

The spectrometer used was a Unicam SP 1750 run at 0.2 nm
s~ ! with a band width of 0.2 nm, the spectrum being recorded
on an AR 55 recorder. The spectrometer was calibrated as
suggested by Stafford (2). The spectrum of gaseous iodine was
run at room temperature after placing several crystals in a
10-cm cell. It was found unnecessary to use higher tempera-
tures provided that the sublimed iodine was removed from the
windows prior to a run.

Treatment of Experimental Data

The first problem is to assign vibrational quantum numbers
to the bands. The numbering given in Table 1 is based on that
proposed by Steinfeld et al. (5) on the basis of intensity dis-
tributions and proved by Brown and James (6) from an
analysis of the isotope effect.

In order to ensure that the assignments are consistent, it
is useful to prepare a Deslandres table (4, p. 40) as in Table
2. An inconsistency in the numbering will show up as an in-
consistency in the differences between rows or columns. This
technique will not show up a consistent numbering error.

Table 1. Numbering of Band Heads for lodine

v v’ A/nm v v’ A/nm v v/ Alnm
27 0 541.2 18 1 571.6 13 2 5957
28 0 539.0 19 1 568.6 14 2 592.0
29 0 536.9 20 1 565.6 15 2 5885
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Figure 2. Overlapping of (V/, 0), (/, 1) and (V/, 2) bands in iodine.
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Directly Derived Parameters

If 7" and T” represent the electronic term energies of the
two states while G(v") and G(v”) represent their vibrational
energies then, ignoring rotational energy changes, the energy
of a transition will be given by

a=T,—T.+G)—G@”") (1)

For the case studied here T is zero, because it refers to the
ground electronic state while T equals ¢, the frequency of
the hypothetical transition between the two minima of the
potential curves (Fig. 1).

The vibrational term values can be written as

G(v) = welv + ) — wexelv + )2 + weyelv + Yo)3 +. (2)

where w, is the frequency for infinitesimal amplltudes of vi-
bration and weXe, weYe ete. are anharmonicity constants. If only
the first two terms in this expression are taken, i.e.

+ 1) — wexelv + 1o)? (3)

then the transition frequency is given by

G(v) = welv +

(v + )?

—w, (0" + W) + wax o (07 4+ 15)2 (4)
The usual procedure from this point (2) is to use a Birge-
Sponer plot to obtain w, and w,x,, then to use literature values
for w,, w.x. along with the observed ¢ to determine oe.

A much better way is to use the techmque of mulnple linear
regr essmn (7) t() determine oq,w,, w.X., w, and w.x, directly
from o, 0" and v”

0= 00+ w, (0 + 1h) — wex, (

Indirectly Derived Parameters

Convergence Limit E*

E* is the energy of the transition from v” = 0 to the top of
the upper state potential well, i.e., the energy at which the
vibrational structure joins the continuum. It is calculated as
the energy of a transition ending on level v plus the sum of all
the vibrational quanta above v to the maximum vUmax. The
energy of the vibrational quanta is given by G(v + 1) — G(v),
so that

5 =0, + 3 (Glo + 1) — G(v)) (5)
Retaining only quadratic terms in G(v) gives

G+ 1) — Gv) = w, — 2weX(v + 1) (6)

It follows from this equation that v,y (i.e., that v for which
G(v + 1) — G(v) = 0) is given by

Umax = W/ (Zwexe) — 1 N
Therefore
E* = 0y + Yolw, — 2wexe(t + 1)](Umax = v) (8)

This equation is just the analytical form of the Birge-Sponer
technique. Its advantage is that all the observed values of o,
due to transitions from 0” = 0 can be used to produce many
independent values of E*, these values can then be used to
obtain some estimate of the error in E*. The graphical tech-
nique is a one point method which gives no indication of the
precision of the determined E*.

This analytical technique assumes a linear Birge-Sponer
extrapolation, a valid assumption for the data obtained in this
experiment.

Dissociation Energy D,

The dissociation energy is the energy required to dissociate
the molecule into atoms. (Dissociation into positive and
negative ions is also possible; however, it does not happen in
this case (4, p. 390)). If radiation of energy E* is absorbed, the
atom will dissociate into the upper state products. When
separated the atoms have zero relative velocity. Increasing the
energy above E* will give atoms having increasing relative
velocity and kinetic energy. It is this process which gives rise
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to the continuum observed in this experiment at short wave-
lengths.

The ground state dissociation energy measured from the
lowest vibrational level is given by

Dy = E* — E(I#) (9)

where E(/#) is the difference in energy between a ground state
iodine atom (*Py) and the first excited state of the iodine
atom (2P;,s). Tt has a value of 7589 cm™! (8). The ground state
dissociation energy measured from the bottom of its potential
well differs from this value by the zero point energy, which in
the approximation used here is (w./2) — (w.x./4) i.e.
D, = Dj+ 52— 2%

The excited state dissociation energy measured from the

bottom of its potential well is

(10)

; W, WX,
D, = E* — g + L2 @e¥e

5 1 (11)

Force Constants k.

When a bond is stretched there arises a restoring force
which resists the stretching force. Within the simple harmonic
oscillator approximation this restoring force is given by (4, p.
74)

F=—kelr—re) (12)

where r — r. is the extension and k. is the force constant. The
greater the force constant the more difficult it is to stretch the
bond. The force constant is related to the curvature of the
potential well and can be calculated from (4, p. 98)

ke = 412ctuw? (13)
Morse Curve

If the simple harmonic oscillator model did apply, the po-
tential energy curve would be a parabola, i.e. its dissociation
energy would be infinite. A more realistic potential energy
curve is that introduced by Morse (9)

Ulr —re) = De(e—Blr—re) — 1)2 (14)
where

B = Twe(2uc/Dh)V2 (15)

The importance of this potential function is that it is possible
to solve the Schrodinger equation for this potential and obtain
the vibrational energy wavefunctions. These wavefunctions
are finite and give eqn. 3 when appropriate identifications are
made.

If r — re is denoted by w then these wavefunctions R, (1) can
be written (10)

R2(u)ae~kz(hz)k—2n=117 (kz) (16)
where
z=e P k=4D fw.
Table 2. Deslandres Table for lodine @
ViV 0 1 2
19 17799 213 17586 212 17374
93 93 93
18 17706 213 17493 212 17281
94 94 94
17 17612 213 17399 212 17187
) 97 97 97
16 17515 213 17302 212 17020
99 98 98
15 17416 212 17204 212 16992

aAll emnes incm™1, corrected for vacuum {13). The ddference between rows equals
u.e - 2w, xetv+ 1) while the difference between columns equals we — 2w, xa(v + 1) where
v is the lower of the two vibrational quantum numbers.



Lin(kz) = (kz)* — n(k — n — 1)}{kz)"~!
+n(n =1k —n—1k—n—2(kz)""2... (17)

where n is the vibrational quantum number. In this experi-
ment we are interested in transitions from n = 0, 1, and 2. The
required prohability density distributions are given by

Ri(u)a e~*2(kz)k—1 (18)
Ri(w)a e=F2(kz)*3[kz — (k — 2)]2 (19)

Ri¥(w)e e %2 (hz )k =2((kz)2 — 2(k — 3)kz + (k — 3)(k — 4)]?
(20)

However, for numerical evaluation these expressions are not
very useful (they contain terms like 2002°°), so a scaled
probability density distribution can be introduced,

#3w) = (R (w)/Ra(0))? (21)
Explicitly the scaled probability density distributions used
here are
‘fi’ﬁ(u) & {,—k(z—l)zk—l (22)
RUu) = e~hE=1zk=3kz — (k — 2)]2 (23)
R3(w) = e K Dzk=D[(kz)2 — 2k — 3)kz + (k — 3}k — 4)]2(

Figure 3 shows these functions superimposed on the Morse
curve for the ground state of iodine. Also plotted are the
squares of the wavefunctions for the harmonic oscillator. The
harmonic oscillator probability density distributions are
presented by (4, p. 78)

Yo e—au’ (25)
fovau? e—au? (26)
Vi (2au? — 1)2 e~ 0? (27)

where a = dw2cuw,/h. It is clear from Figure 3 that as the vi-
brational quantum number increases, the difference in bond
length between the maxima for the harmonic and anharmonic
oscillators becomes more pronounced. This is important in
determining the expected intensity distribution in the vibronic
bands.

Anharmonic Oscillator Maxima u"™

The maxima in the anharmonic oscillator distributions can
be calculated from the following formulae, where in each case
z is related to u by the equation

1

u=- Elnz (28)
ue: z = (k — 1)/k (29)
ul™: z = [(2k — 3) £ /8k — 15]/2k (30)

u™: (kz)3 — (3k — T)(kz)? + (k — 3)(3k — 10)kz
—(k—3)(k —4){k —=5)=0 (31)
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Figure 3. Harmonic and anharmonic probability density distributions for io-
dine.

Although an analytical solution for egn. (31) is obtainable, it
is easier to solve the equation numerically.
The classical turning points, u, for each of the three vibra-
tional levels can be obtained by solving the equation
walv + Vo) — wex (v 4 )2 = Do(e 7" — 1)2 (32)

”

Difference in Equilibrium Bond Lengths, r, — r,

As has been discussed by D’alterio et al. (3), it is possible
to use the intensities of the (v, 0) bands to estimate the dif-
ference between the equilibrium bond lengths in the two
states. Because of the problem of overlapping bands men-
tioned earlier, a simpler approach has been taken here. It is
considered sufficient merely to take the energy corresponding
to the most intense transition, aj,. By the Franck-Condon
principle (4, p. 194), this transition will originate and end at
the internuclear distance r', (not r, as claimed by D’alterio
et al.). It is clear from Figure 1 that

U(uf®™ 4 ri—ry) = o - (33)

= D,(e=Fu—1)? (34)

e, ro—ro=ul+ ﬁ% In (14 U (ud*+r,— r)/D,) (35)

The plus sign is chosen if the bands are red degraded, i.e., r;a
> r;, the negative sign if the bands are violet degraded, i.e., r.
< e

Transitions of Maximum Intensity

Provided that the vibrational quantum number is greater
than about 10, the probability maxima lie close to the potential
curve (11). Assuming that it lies at the same internuclear
distance as the curve, and that the Franck-Condon principle
holds, it is possible to predict the most intense (v’, 0), (v/, 1)
and (v’, 2) transitions. They are obtained by solving the fol-
lowing equation for v’

U(u) = walv’ + V) — wexe(v’ + )% = Dije P4 —1)2  (36)
where
uiuﬁ“"‘+r:—r;

It should be noted that this calculation (where r, — r, is used
to calculate the maximum intensity) is not related in a circular
way to the calculations in eqns. 33-35 (where the maximum
intensity v’ is used to calculate r, — r,) as it brings in w, and
w,x, which are independent of the parameters in those three
equations. The calculations serve as a good check on the in-
ternal consistency of the experimental data.

If a plotter is available the relationship between the Morse
curves and the vibrational wavefunctions can be shown as in
Figure 4. Drawing a vertical transition from the maximum
gives the value of U’ (u), it is instructive then to draw in the
appropriate upper state vibrational levels using eqn. (3).
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Figure 4. Derived potential curves for iodine.
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Table 3. Parameters for lodine @

Equation (4) Equation (42)
A 15730+ 3 15 766 + 4
W, 132.11 +0.24 126.04 £+ 0.69
WeXy 1.051 + 0.006 0.735 4 0.036
W,Ye — —0.0052 + 0.0006
w, 213.36 + 0.87 214.44  +0.44
W, X 0.14 +0.32 0.67 +0.16
E* 19735+ 2 19 464 + 3
255 12137 £ 2 11866 + 3
D, 12244 4 3 11973+ 3
D, 411246 380547
Dy 4046+ 6 374247
Kk 1245+ 0.4 120.8 + 0.9
K" 229.5+ 1.0 223.3+05
B7A— 1.998 + 0.005 1.982 £ 0.012
B7 1A 1.870 £ 0.008 1.901 + 0.004
atA—2 248.6 + 0.5 2872413
a"fA~? 4015+ 1.6 403.6 £ 0.8
102ug™/A 0.23 0.24
10272/ A —4.43, 5.60 —4.41,5.60
10205/ A —6.95, 0.80, 8.97 —6.92,0.81, 8.96
(ry— r)A 0.305 + 0.001 0.315 + 0.002
1028, 3.010 + 0.002 2.990 + 0.004
ryl A 2.971 4 0.001 2.981 + 0.002
104a, 2.020 + 0.004 2.089 + 0.010
10, 1.564 + 0.001 1.591 4 0.001
rolA 2.669 2.669
/A 2.674 2.674
oA 2.680 2.680
10~5k,/dyne cm™" 0.65 0.59
105k, /dyne cm™! 1.70 1.72
v max. intens. 27,14, 9 26, 14, 10

2 All values in cm™ ! except where indicated.

Rotational Constants B,

If the literature value for r, is assumed then it is possible
to determine r, and from these the rotational constants in both
states as well as their variation with vibrational quantum
number. The equilibrium rotational constants are determined
from

B, = h/(872curd) (37)

The rotational constant in a given vibrational level is related
to B. by the equation (4, p. 106)

By =Be — aelv + 1) (38)
where a, can be determined from (4, p. 108)
e = 3B (v Bo/De — 2Be/we) (39)

Equation (37) can be used to verify that the difference be-
tween the band head and band origin can be ignored within
the accuracy of these data.

Equations (37)-(39) permit the calculation of the bond
lengths rq, r1 and ro in each of the three lowest vibrational
levels.

Choice of Equations

Equation (39) is a modification of the one quoted by
Herzherg; the equation there involves the anharmonicity
constant and therefore can have large error limits when de-
termined from such low resolution data as obtained in this
experiment. The transformation uses the relationship wexe
= w?/4D, (4, p. 100). Similarly, the literature contains a
number of different equations from those used here, the cri-
terion of choice for this paper being those equations that
contained precisely obtainable parameters. For example, al-
ternative equations for some of the parameters are

B = (872cpuwex/h)V2(9) (40)
oL (10) (41)
Xe

Equations (40) and (41) involve the anharmonicity, for the
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Table 4. Summary of Relations

g multiple linear regression
; .
We multiple linear regression
WoXg multiple linear regression
WeYe multiple linear regression
We multiple linear regression
WeXe multiple linear regression

E* Vmax = we/(zwe’?g) =4

E*=oyt 1/2[0% = 2w;=.";(‘"+ 1)]|Vmax -]

Calculate for all o, originating from v = 0.
Find the average and standard deviation.

Dé Dy =E* —E(I*) E(I*) from literature
D, D, =D+ Yowe — ‘/’4ﬂw;x; o
D, D,=E"—ag.+ Yowe - j/.,wexe
Dy Dy = D, — Vow, + VatweXe
k k= 4Dglw,
B B = Twe(2culDeh)'’?
a a= 4micuwe/h
" " 1
ug® z=(k— 1)k, u 3 Inz

1
o z=[(2k— 3)+ \/8k— 15]/2k,u:—alnz

uz (kz)® — (3k — 7)(kz)? + (k — 3)(3k — 10)kz — (k — 3)(k — 4)
(k—5)=0

r—r, fo— Iy =up™+—In(1+ VU™ + 1o — 1a)/ Dg)

” . » v n
U™ + re = rg) = O — Ue + Vawe — YawexX,

B, B, = W(8m2c u r,?) re from literature
B, B, = h/(87%¢c u r?)
B, 2B,
e ufg=35a( ===
By We
hi r=+/hl8w?cu B
ke ke =412 c? pu w?

ground state this is the least precisely determined parameter
(see Table 3). Equation (41) does have the useful feature of
showing that as the anharmonicity increases the value of k
decreases.

Results

The results of a typical careful run are collected together
in Table 3.
The quoted errors are standard deviations.

Comparison with the Literature

It is common practice to compare results with well tabulated
literature values. Such a comparison must be approached
cautiously for two reasons. The first reason is that new ex-
perimental data or reinterpretation of accepted data may lead
to marked changes in the values.

The second and more important reason is that present lit-
erature values are usually obtained using much more sophis-
ticated term functions, e.g., eqn. (2) is usually expanded to
higher powers in (v + 1), (for instance Le Roy (12) fitted the
experimental data to an expansion up to (v + 1)1°), thereby
affecting the coefficients of the lower powers. This can have
amarked effect, as can be seen in Table 3. The second column
of figures was obtained from the same experimental data using
eqn. (42) in place of eqn. (4)

0= 0o+ wulv’ + 1) — wox (v’ + 1) + wuyelv” + o)?

— wo(v” + Vo) + wex(v” + )2 (42)
It is clear that the more sophisticated expression produces
marked changes in the parameters and, in general, brings
them closer to the accepted values.

Because of these problems, the emphasis should be on
precision (internal consistency, standard deviation) in eval-
uating reports rather than accuracy (closeness to some tabu-
lated accepted value). It is one of the advantages of multiple
linear regression that error estimates of the parameters can
be obtained easily, careful work produces small standard de-



viations and should be treated as more desirable than work
that produces a mean value close to the accepted value but
which has a large standard deviation.

Table 4 summarizes the method of calculation of the pa-
rameters in a logical order.

Conclusion

This paper presents equations and techniques for calcu-
lating and interpreting many of the spectroscopically im-
portant parameters associated with the ground ('Z}) and
second excited (*I1},) states of the iodine molecule. It also
shows students that in physical chemistry the obtaining of
experimental data in the laboratory is often only a small part
of the total time commitment compared to the detailed

analysis of data.
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